DeepResearchGym是一个创新的开源评估框架,专为深度研究系统设计,旨在解决当前依赖商业搜索API带来的透明度和可重复性挑战。该系统由卡内基梅隆大学研究团队开发,结合了基于ClueWeb22和FineWeb大型网络语料库的可重复搜索API与严格的评估协议。实验表明,使用DeepResearchGym的系统性能与使用商业API相当,且在评估指标间保持一致性。人类评估进一步证实了自动评估协议与人类偏好的一致性,验证了该框架评估深度研究系统的有效性。
这项研究介绍了FinTagging,首个面向大型语言模型的全面财务信息提取与结构化基准测试。不同于传统方法,它将XBRL标记分解为数值识别和概念链接两个子任务,能同时处理文本和表格数据。在零样本测试中,DeepSeek-V3和GPT-4o表现最佳,但在细粒度概念对齐方面仍面临挑战,揭示了当前大语言模型在自动化XBRL标记领域的局限性,为金融AI发展提供了新方向。
这项研究介绍了SweEval,一个新型基准测试,用于评估大型语言模型在企业环境中处理脏话的能力。研究团队从Oracle AI等多家机构的专家创建了一个包含八种语言的测试集,模拟不同语调和上下文的真实场景。实验结果显示,LLM在英语中较少使用脏话,但在印地语等低资源语言中更易受影响。研究还发现较大模型通常表现更好,且多语言模型如Llama系列在处理不当提示方面优于其他模型。这项工作对企业采用AI技术时的安全考量提供了重要参考。
这项研究提出了"VeriFree"——一种不需要验证器的方法,可以增强大型语言模型(LLM)的通用推理能力。传统方法如DeepSeek-R1-Zero需要验证答案正确性,限制了其在数学和编程以外领域的应用。VeriFree巧妙地计算正确答案在模型生成的推理过程后出现的概率,作为评估和训练信号。实验表明,这种方法不仅能匹配甚至超越基于验证器的方法,还大幅降低了计算资源需求,同时消除了"奖励黑客"问题。这一突破将有助于开发出在化学、医疗、法律等广泛领域具有更强推理能力的AI系统。
这项研究提出了"思想家"(Thinker)任务,一种受人类双重加工理论启发的新型AI训练方法。研究者将问答过程分解为四个阶段:快速思考(严格预算下给出初步答案)、验证(评估初步答案)、慢速思考(深入分析修正错误)和总结(提炼关键步骤)。实验表明,该方法使Qwen2.5-1.5B模型的准确率从24.9%提升至27.9%,DeepSeek-R1-Qwen-1.5B模型从45.9%提升至49.8%。显著的是,仅使用快速思考模式就能达到26.8%的准确率,且消耗更少计算资源,证明了直觉与深度推理作为互补系统的培养价值。
这项由ELLIS研究所和马克斯·普朗克智能系统研究所的科学家进行的研究,揭示了大语言模型安全测试的根本规律:越狱攻击成功率由攻击者与目标模型间的能力差距决定。通过评估500多个攻击者-目标组合,研究团队发现:更强的模型是更好的攻击者;当目标能力超过攻击者时攻击成功率急剧下降;社会科学能力比STEM知识更能预测攻击成功。基于这些发现,研究者建立了预测模型,表明随着AI进步,人类红队测试可能逐渐失效,提示需要发展自动化安全评估方法及更全面地评估模型的说服和操纵能力。
华中科技大学和香港中文大学研究团队提出SATORI-R1,一种通过空间定位和可验证奖励增强多模态推理的新方法。该方法将视觉问答任务分解为图像描述、区域定位和答案预测三个可验证阶段,解决了自由形式推理中注意力分散和训练收敛慢的问题。实验证明,SATORI-R1在七个视觉问答基准上一致提升性能,最高达15.7%,并展示出更聚焦的视觉注意力和更低的训练方差。
这项由浙江大学和香港大学联合研究的PH-Reg方法解决了视觉Transformer模型中的"异常令牌"问题,这些异常会干扰模型对图像细节的准确理解。研究团队提出了一种不需要完全重新训练的自蒸馏方法,通过添加"寄存器令牌"来吸收这些异常。实验表明,PH-Reg在语义分割和深度预测任务上显著提升了性能,平均mIoU达到41.85%,优于现有方法。该技术为现有大型视觉模型提供了一种高效的改进路径,无需昂贵的重新训练过程。
ServiceNow研究团队开发了一种名为RLRF的新方法,通过强化学习显著提升了AI生成矢量图形(SVG)的质量。与传统方法不同,RLRF让AI能够"看到"自己生成的SVG代码渲染后的效果,并据此获得反馈。研究表明,这种方法不仅提高了生成图像的视觉准确性,还使代码更加简洁高效,并能够轻松泛化到从未见过的图像类型。这一突破为从图像或文本自动生成高质量矢量图形铺平了道路,对设计和开发领域具有重要意义。
香港中文大学与华为诺亚方舟实验室合作开发了PreMoe框架,解决了大型混合专家模型(MoE)在内存受限设备上的部署难题。研究团队发现MoE模型中的专家表现出明显的任务专业化特征,据此提出了概率专家精简(PEP)和任务自适应专家检索(TAER)两大核心技术。实验证明,DeepSeek-R1 671B模型在精简50%专家后仍保持97.2%的MATH500准确率,内存需求降至688GB;而更激进的精简方案(减少87.5%专家)也能保持72.0%的准确率。该方法适用于多种MoE架构,为强大AI系统的广泛部署铺平了道路。
SCIENCEBOARD是一项开创性研究,旨在评估多模态自主智能体在真实科学工作流中的表现。研究团队构建了一个包含169个高质量任务的基准测试,涵盖生物化学、天文学等六个科学领域,并开发了一个真实环境让智能体通过CLI或GUI接口与科学软件交互。实验评估表明,即使是最先进的模型在这些复杂科学任务上的成功率也仅为15%,远低于人类表现,揭示了当前技术的局限性并为未来科学智能体的发展提供了宝贵见解。
帝国理工学院的研究团队开发了AlphaMed,这是首个仅通过极简规则强化学习就能培养医疗推理能力的AI模型,无需依赖传统的思维链示范数据。通过分析数据信息丰富度和难度分布的影响,研究发现高信息量的医疗问答数据是推理能力的关键驱动因素。AlphaMed在六个医疗问答基准上取得了领先成绩,甚至超越了更大的封闭源模型,同时展现出自发的步骤推理能力,为医疗AI发展提供了更加开放、高效的新路径。