AI的发展速度和成本问题是一个复杂的话题。随着AI模型的不断进步,它们的成本也在不断上升,下一代模型的开发变得更加昂贵,这种成本的增加将会导致AI发展速度的放缓。如果未来的AI模型能够显著降低成本,比如GPT-5模型的成本大幅下降,那么将会看到AI技术的加速发展,但在当前的情况下,由于成本的上升和对模型的谨慎态度,AI的发展会比预期的要慢。
通常而言,RAG 赋予了语言模型获取和处理外部信息的能力,使其不再被限制在固有的知识范畴内。通过将语言模型与信息检索系统结合,RAG 允许模型动态地从互联网、知识库或其他外部来源检索相关内容,并将这些内容融合到生成的响应中。这一机制确保了生成的答复不仅贴近真实世界,内容更加翔实可信,从而显著提升了语言模型在处理复杂问题时的表现。