LangGraph是LangChain生态系统的新框架,专为构建基于大语言模型的有状态、多代理应用程序而设计。它支持循环流程,提供精细的控制能力,具备持久性特性,并能与人类协作。LangGraph适用于个人助理、AI教师、软件用户体验优化、空间计算和构建智能操作系统等多种场景。
近年来,GPU(图形处理单元)已从最初的图形渲染专用硬件,发展成为高性能计算领域的“加速器”,为各类计算密集型任务提供了强大的并行计算能力。GPU 编程,即利用 GPU 的并行架构来加速应用程序的执行,已成为推动科学计算、人工智能、大数据等领域快速发展的重要驱动力。
人工智能(AI)和机器学习(ML)技术的飞速发展,正深刻地改变着我们的生活和工作方式。为了满足日益复杂的 AI 应用对计算能力的迫切需求,半导体行业正经历着一场前所未有的变革。传统的 CPU 虽然在通用计算方面表现出色,但在面对大规模并行计算任务时,其性能瓶颈日益凸显。
凭借其卓越的数据处理能力,深度学习使得计算机能够实现多种过去仅为人类所独有的认知智能。通常而言,深度神经网络的训练过程极其复杂,通常需要进行大量的并行计算。
在实际业务场景中,赋予语言模型更强大能力的主要方式有两种:一种是通过特殊管道向模型输送额外信息,另一种是让模型自主使用各种工具。
Luga讨论了GPU在人工智能生态中的重要性,特别是在加速AI核心算力构建方面。GPU以其高度并行的架构,在深度学习等AI技术中展现出卓越性能。与CPU相比,GPU在处理图形渲染、机器学习、视频编辑等计算密集型任务时具有显著优势。GPU和CPU的协同工作提高了数据吞吐量和并发计算能力。GPU的应用场景包括专业可视化、机器学习、区块链和模拟技术等领域。
通常而言,RAG 赋予了语言模型获取和处理外部信息的能力,使其不再被限制在固有的知识范畴内。通过将语言模型与信息检索系统结合,RAG 允许模型动态地从互联网、知识库或其他外部来源检索相关内容,并将这些内容融合到生成的响应中。这一机制确保了生成的答复不仅贴近真实世界,内容更加翔实可信,从而显著提升了语言模型在处理复杂问题时的表现。
AI Agent 已经成为生成人工智能应用程序的重要组成部分。然而,为了能够有效地与复杂环境进行互动,这些代理需要具备强大的推理能力,以便能够独立做出决策并帮助用户解决各种任务。行为和推理之间存在着紧密的协同联系,这对于 AI Agent 快速学习新任务非常有帮助。
随着 LLM 的快速发展和改进,我们正在面对新的挑战和机遇。LLM 的能力和表现水平不断提高,这使得基于单词出现的评估方法(如 BLEU)可能无法完全捕捉到 LLM 生成文本的质量和语义准确性。LLM 能够生成更加流畅、连贯且语义丰富的文本,而传统的基于单词出现的评估方法则无法准确衡量这些方面的优势。
OpenAI 创新性地推出了其最先进、最前沿的模型 GPT-4o,这是标志着人工智能聊天机器人和大型语言模型领域实现重大飞跃的突破性举措。预示着人工智能能力的新时代 ,GPT-4o 拥有显着的性能增强,在速度和多功能性方面都超越了其前身 GPT-4。
随着技术的不断进步,LLM 带来了前所未有的机遇,吸引了开发者和组织纷纷尝试利用其强大的能力构建应用程序。然而,当预训练的 LLM 在实际应用中无法达到预期的性能水平时,人们将不由自主地开始思考:我们到底应该使用哪种技术来改善这些模型在特定场景下的表现?
本文讨论了构建大型语言模型(LLM)的关键要素:向量、令牌和嵌入。向量是机器理解语言的基础,通过将文本数据转换为高维向量空间中的表示。令牌是文本数据在模型内部的表示形式,可以是单词、子词或字符。嵌入则是融入了语义语境的令牌表征,代表文本的意义和上下文信息。这些组件共同构筑了LLM的技术支柱,赋予模型卓越的语言理解和生成能力。
LLM(大型语言模型)在自然语言处理领域取得显著进展,但存在'幻觉'现象,即生成不准确或脱节内容。幻觉产生原因包括训练数据问题、模型架构缺陷、推理策略限制等。减轻幻觉的策略涉及上下文注入、数据增强、预处理、输入控制、模型架构调整和持续学习改进。幻觉问题促使我们反思AI的可解释性和可控性,需不断优化AI技术,提升其认知能力。