最新文章
GPU/TPU大集群组网技术分析

GPU/TPU大集群组网技术分析

用于连接 GPU 服务器中的 8 个 GPU 的 NVLink 交换机也可以用于构建连接 GPU 服务器之间的交换网络。Nvidia 在 2022 年的 Hot Chips 大会上展示了使用 NVswitch 架构连接 32 个节点(或 256 个 GPU)的拓扑结构。由于 NVLink 是专门设计为连接 GPU 的高速点对点链路,所以它具有比传统网络更高的性能和更低的开销。

中国分布式存储产业未来空间广阔(2024)

中国分布式存储产业未来空间广阔(2024)

根据中国信息通信研究院和分布式存储产业方阵的市场调研及分析,2021年中国分布式存储市场规模达到 178 亿元,年增长率达到 44%,高于中国企业级外置存储的 25%增长速度,预计未来 3 年中国分布式存储市场规模仍将保持40%以上的年增长。

Computex 2024:英伟达AI路线及战略分析

Computex 2024:英伟达AI路线及战略分析

近二十年来,英伟达一直在研究加速计算,可以增强CPU,加速专门处理器可以做得更好的工作。

鲲鹏芯片及通用机密计算平台技术

鲲鹏芯片及通用机密计算平台技术

机密计算,云计算中的当前方法处理静态数据和传输中的数据,但对使用中的数据进行加密被认为是为敏感数据提供完全加密的生命周期的第三步,也是最具挑战性的步骤。机密计算专注于保护使用中的数据,更多地从应用的角度出发。

AI算力产业链及竞争格局分析

AI算力产业链及竞争格局分析

目前,AIGC产业生态体系的雏形已现,呈现为上中下三层架构:①第一层为上游基础层,也就是由预训练模型为基础搭建的AIGC技术基础设施层。②第二层为中间层,即垂直化、场景化、个性化的模型和应用工具。③第三层为应用层,即面向C端用户的文字、图片、音视频等内容生成服务。

AI服务器产业链及竞争格局分析
2024-04-16

AI服务器产业链及竞争格局分析

Open AI的大型语言生成模型ChatGPT火热,它能胜任刷高情商对话、生成代码、构思剧本和小说等多个场景,将人机对话推向新的高度。全球各大科技企业都在积极拥抱AIGC,不断推出相关技术、平台和应用。

高性能GPU服务器硬件拓扑与集群组网

高性能GPU服务器硬件拓扑与集群组网

一些 GPU 厂商(不是只有 NVIDIA 一家这么做)将将多个 DDR 芯片堆叠之后与 GPU 封装到一起 (后文讲到 H100 时有图),这样每片 GPU 和它自己的显存交互时,就不用再去 PCIe 交换芯片绕一圈,速度最高可以提升一个量级。这种“高带宽内存”(High Bandwidth Memory)缩写就是 HBM。

国内AI算力:昇腾一马当先,各家竞相发展
2024-04-09

国内AI算力:昇腾一马当先,各家竞相发展

昇腾已经在华为云和28 个城市的智能算力中心大规模部署,根据财联社报道,2022 年昇腾占据国内智算中心约 79%的市场份额。

InfiniBand与RoCE对比分析:AI数据中心网络选择指南

InfiniBand与RoCE对比分析:AI数据中心网络选择指南

在当前人工智能技术飞速发展的背景下,其在包括自然语言处理、计算机视觉、自动驾驶系统、虚拟助手服务、推荐算法以及医疗诊断在内的众多前沿应用中发挥着至关重要的作用。随着AI应用的不断深化与升级,数据中心基础设施必须应对日益严苛的要求,特别是对于低延迟、高吞吐量网络的需求愈发迫切,以确保能够高效处理复杂且数据密集型的工作负载。

走进芯时代:AI算力GPU芯片分析

尽管AI芯片种类繁多,GPU因其适应性和强大的并行计算能力,仍是AI模型训练的主流硬件。英伟达在GPU领域的技术积累和生态建设使其处于领先地位,而国内GPU厂商虽在追赶,但仍存在差距。AI应用向云、边、端全维度发展,模型小型化技术成熟,数据传输需求增加,Chiplet技术降低设计复杂度和成本。

Nvidia AI芯片路线图分析与解读

Nvidia在2023年投资者会议上展示了其GPU发展蓝图,计划在2024年推出H200和B100 GPU,2025年推出X100 GPU。其AI芯片更新周期从两年一次缩短至一年一次,体现产品开发速度加快。Nvidia的“One Architecture”统一架构支持不同环境下的模型训练和部署,适用于数据中心和边缘计算。同时,Nvidia的技术路线图包括HBM3E高速存储器、PCIE 6.0/7.0、NVLink、224G SerDes、1.6T接口等先进技术。

HotChips 2023:UCIe协议和技术

Universal Chiplet Interconnect Express (UCIe)(R) 是一个开放的行业互连标准,旨在实现芯片间的封装级互连,提供高带宽、低延迟的连接,适用于云端、边缘端、企业等多个计算领域。UCIe支持不同晶圆厂、设计和封装方式的Die集成,满足对算力、内存、存储和互连日益增长的需求。

HBM研究框架:突破“内存墙”,封装新突破

HBM技术通过提升I/O口数量和速率,突破内存限制,成为AI芯片的强大辅助。HBM3和HBM3e将成为AI服务器主流配置,预计HBM4将于2026年发布。全球HBM市场预计在2024年超百亿美元。HBM采用TSV+Bumping和TCB键合方式,但散热效率低下,海力士引入MR-MUF工艺改善。预计HBM4将采用混合键合Hybrid Bonding技术,3D封装的核心是混合键合与TSV。

大模型现状和未来:百模征战,产业智能跃迁(2024)

大模型现状和未来:百模征战,产业智能跃迁(2024)

AI大模型通过大规模预训练和微调实现通用人工智能,目前正从'大炼模型'向'炼大模型'转变,推动多模态和多场景革命。GPT模型迭代加速,国内企业如百度、腾讯、阿里在大模型市场占据优势。

AI芯片架构众多,谁会主宰算力芯片?

智算中心的发展依托最新AI理论和计算架构,以AI大模型和算力技术为核心。GPU主导算力芯片市场,AI信创推动国产算力。AI分布式计算市场由算力芯片、内存和互联设备组成。ChatGPT推动GPU需求,SK海力士HBM3产量售罄。CoWoS封装技术集成HBM与处理器,台积电领先封装市场。AI算力需求推动高效电源技术发展,背面供电技术成为关键。

AIGC产业图谱V2.0

AIGC产业图谱V2.0

ChatGPT的火爆使生成式AI(AIGC)回归焦点,AIGC指利用AI技术生成内容,涵盖文本、图像、音频等领域。AIGC产业图谱V2.0展示了基础设施、算法模型、内容应用等生态布局。

Arm v9芯片新架构及实践应用

Arm v9芯片新架构及实践应用

ARM V9架构强调AI、矢量和DSP性能,已广泛应用于高端智能手机和数据中心芯片,如NVIDIA Grace Hopper、AWS Graviton等。ARM在智能手机、PC等领域为AI赋能,如Arm Cortex-X4芯片。高通基于ARM架构推出面向PC的骁龙X Elite处理器。

HBM、HBM2、HBM3和HBM3e技术对比

HBM、HBM2、HBM3和HBM3e技术对比

HBM(高带宽存储)是一种多层DRAM Die垂直堆叠的存储技术,通过TSV技术实现高带宽和小体积。

GPU集群:NVLink、InfiniBand、ROCE、DDC技术分析

GPU集群:NVLink、InfiniBand、ROCE、DDC技术分析

探讨GPU/TPU集群网络组网技术,包括NVLink、InfiniBand、ROCE以太网Fabric、DDC网络方案。

一文详解信创技术(软件篇)

信创产业旨在实现信息技术领域的自主可控与国家信息安全,涵盖基础硬件、基础软件、应用软件、信息安全四部分。重要环节包括芯片、整机、操作系统、数据库、中间件。文章还介绍了操作系统、中间件、数据库、固件的概念、分类及发展历程,并提供了信创产业的研究报告和技术资料。